3 research outputs found

    Practical Guide for Building Superconducting Quantum Devices

    Get PDF
    Quantum computing offers a powerful new paradigm of information processing that has the potential to transform a wide range of industries. In the pursuit of the tantalizing promises of a universal quantum computer, a multitude of new knowledge and expertise has been developed, enabling the construction of novel quantum algorithms as well as increasingly robust quantum hardware. In particular, we have witnessed rapid progress in the circuit quantum electrodynamics (cQED) technology, which has emerged as one of the most promising physical systems that is capable of addressing the key challenges in realizing full-stack quantum computing on a large scale. In this Tutorial, we present some of the most crucial building blocks developed by the cQED community in recent years and a précis of the latest achievements towards robust universal quantum computation. More importantly, we aim to provide a synoptic outline of the core techniques that underlie most cQED experiments and offer a practical guide for a novice experimentalist to design, construct, and characterize their first quantum device

    Towards European standards for quantum technologies

    No full text
    The Second Quantum Revolution facilitates the engineering of new classes of sensors, communication technologies, and computers with unprecedented capabilities. Supply chains for quantum technologies are emerging, some focused on commercially available components for enabling technologies and/or quantum-technologies research infrastructures, others with already higher technology-readiness levels, near to the market.In 2018, the European Commission has launched its large-scale and long-term Quantum Flagship research initiative to support and foster the creation and development of a competitive European quantum technologies industry, as well as the consolidation and expansion of leadership and excellence in European quantum technology research. One of the measures to achieve an accelerated development and uptake has been identified by the Quantum Flagship in its Strategic Research Agenda: The promotion of coordinated, dedicated standardisation and certification efforts.Standardisation is indeed of paramount importance to facilitate the growth of new technologies, and the development of efficient and effective supply chains. The harmonisation of technologies, methodologies, and interfaces enables interoperable products, innovation, and competition, all leading to structuring and hence growth of markets. As quantum technologies mature, the time has come to start thinking about further standardisation needs.This article presents insights on standardisation for quantum technologies from the perspective of the CEN-CENELEC Focus Group on Quantum Technologies (FGQT), which was established in June 2020 to coordinate and support the development of standards relevant for European industry and research
    corecore